
Enterprise
Integration Patterns
in Salsa Cloud
Da Gregor Hohpe a Google Cloud

11 October, DevFest Milano 2025
Antonio Perrone

The Problem: The Integration Jungle

—
2

The Domino Effect

Inconsistent Data

Spread Business Logic

Adapted from https://xkcd.com/2347/

—
3

Antonio Perrone
Technical Leader
@

@anperrone

The Solution: Let's Use a Map!

—
4

What is a pattern?

It's not a technology, but a proven recipe.

It provides a common vocabulary for architects and
developers.

It allows you to design decoupled, resilient, and
maintainable solutions.

We don't need to reinvent the wheel, just use the
right recipes!

EIP: the Fab4 Pattern

—
5

📨Message Channel: The pipe that connects services

📢Publish-Subscribe: One message → N recipients

🔀Message Router: if (type=VIP → express-queue

🔄Message Translator: XML  JSON  Protobuf

Pattern → GCP Service

—
6

Cloud Pub/Sub: Our messaging system. The "pipe" for our Message Channels.

Cloud Functions: Our "on-demand" business logic. Perfect for Routers and Translators.

Cloud Run: Our containerized microservices. Useful as publishers or subscribers.

Cloud Workflows: Our orchestrator. To tie together multiple patterns in a complex process.

Pattern 1 Message Channel

—
7

Ref: https://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageChannel.html

Common Derived Patterns:
● Point-to-Point Channel: Only one receiver consumes the

message (like a task queue).
● Dead Letter Channel: A destination for messages that cannot

be processed successfully.

Pattern 2 Publish-Subscribe Channel

—
8

Ref: https://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html

Common Derived Patterns:
● Durable Subscriber: Ensures a subscriber receives messages

even if it was disconnected when they were published. Crucial
for avoiding data loss.

● Event Message: The message is an immutable, timestamped
notification that something has happened.

Pattern 3 Message Router

—
9

Ref: https://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html

Common Derived Patterns:
● Content-Based Router: Routes a message based on its content

(e.g., if order.amount > 1000.
● Message Filter: A special router that either passes a message

or discards it based on a condition.
● Recipient List: Routes a single message to a list of dynamically

specified recipients.

Pattern 4 Message Translator

—
10

Ref: https://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageTranslator.html

Common Derived Patterns:
● Content Enricher: Adds missing data to a message by retrieving it

from an external source.
● Content Filter: Removes unnecessary or sensitive data from a

message.
● Claim Check: Moves a large message payload to external storage

and passes along only a reference (a "claim check") to it.

Use Case: Processing an Order

—
11

① User → API 200ms ✓

② API  Pub/Sub: "order.created"

③ Router Function:
• amount > $1000  Workflow
• else → std-order topic

④ Services process async

User response time: 200ms
Resilience: If a service is down, automatic retry

The Quantified Benefits

—
12

Zero Lost Orders
If your order manager is down for 2 hours, messages queue up in Pub/Sub.
No revenue is lost.

Handles Black Friday Peaks
The system scales from 0 to 1000s of requests/sec automatically,
with zero manual intervention.

Fast User Response
The user never waits for slow internal systems.
The experience is always fast and fluid.🚀

📈

��

5 Mistakes We Made So You Don't Have To)

—
13

 🎯 “In distributed systems, anything that can go wrong will go wrong… simultaneously… on Friday at 500 PMˮ

GCP Pub/Sub vs Apache Kafka vs RabbitMQ

—
14

Cloud Pub/Sub GCP

When to use:

📍 Already on GCP ecosystem

📊 Very high volume (billion of msg/day)

🌍 Need to scale globally

💰 Predictable cost model

Use case: Real-time analytics, IoT telemetry

Apache Kafka

When to use:

📝 Event sourcing / log streaming

🔄 Needs to event reply

📈 Stream processing

🏢 On-premise or hybrid cloud

Use case: Event store for CQRS, CDC from
database

RabbitMQ

When to use:

🔧 Complex Routing (topic exchanges)

📬 Messages priority

🔐 Multiples protocol AMQP, MQTT

💻 Deployment on-premise

Use case: Task queue for job processing,
enterprise microservice

Key Takeaways

—
15

✅ Classic EIPs are your map for modern distributed systems.

✅ GCP provides the perfect serverless ingredients.

✅ Decoupling isn't a luxury ; it's the foundation for resilience and speed.

✅ Start simple (Pub/Sub + Functions), then compose for complexity.

✅ Measure the benefits : less downtime, better UX, more agility.

Thank You! Question?

—
16

References
● eaipatterns.com
● cloud.google.com/run
● cloud.google.com/pubsub

Contacts

@anperrone

@antonioperrone

 https://antonioperrone.dev

Repository code

http://eaipatterns.com
http://cloud.google.com/pubsub

