Nearform_

Enterprise
Integration Patterns
In Salsa Cloud

Da Gregor Hohpe a Google Cloud

11 October, DevFest Milano 2025

The Problem: The Integration Jungle

ALL MODERN DIGITAL
INFRASTRUCTURE

The Domino Effect
Inconsistent Data

Spread Business Logic

Adapted from https://xkcd.com/2347/

N

Antonio Perrone

Technical Leader
@Nearform_

@anperrone

The Solution: Let's Use a Map!

,/Z . 5/%’//;40/» %J\;//J/ ’ ,/// reatecre %)(é'é

ENTERPRISE ()
INTEGRATION ™

It provides a common vocabulary for architects and

developers. PATTERNS

DESIENING, BUILDING, AND

What s a pattern?

It's not a technology, but a proven recipe.

It allows you to design decoupled, resilient, and
maintainable solutions.

D EPLOYINGMUESSAGING SOLUTIONS

' : . GREGOR HOHPE -
We don't need to reinvent the wheel, just use the T anad\abr £ 'ﬁsi‘.

r’ght reCIpeS.’ Wit CONTRIBUTIONS BY
KYLE BROWN
ConraAD E D'Cruz
MARTIN FOWLER
SEAN NEVILLE %
MICHAEL . RETTIG o
JONATHAN SIMON ih .

Forewords by John Crupi and Martin Fowler

IS

EIP: the Fab4 Pattern

‘= Message Channel: The pipe that connects services
®Publish-Subscribe: One message - N recipients
B Message Router: if (type=VIP) > express-queue

B Message Translator: XML - JSON - Protobuf

o

Pattern > GCP Service

(2]

Cloud Pub/Sub: Our messaging system. The "pipe" for our Message Channels.
Cloud Functions: Our "on-demand" business logic. Perfect for Routers and Translators.
Cloud Run: Our containerized microservices. Useful as publishers or subscribers.

Cloud Workflows: Our orchestrator. To tie together multiple patterns in a complex process.

Pattern 1:

~

@ Service A — °n EEE—— @ Service B

Ref: https://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageChannel.htm!

Common Derived Patterns:
e Point-to-Point Channel: Only one receiver consumes the
message (like a task queue).
e Dead Letter Channel: A destination for messages that cannot
be processed successfully.

El1: 1 PP4llPublish-Subscribe Channel

o]

—ft

Fublisher
Changed

@ Service B
@ Service A L ‘e @ Service C

Subscriber

@ Service D

Ref: https://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.htm/

Common Derived Patterns:

Durable Subscriber: Ensures a subscriber receives messages
even if it was disconnected when they were published. Crucial
for avoiding data loss.

Event Message: The message is an immutable, timestamped
notification that something has happened. N

Pattern 3:

outQueue 1

—Pt[l

inGueue
|~ —
-
it e

wouter

Ref: https://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.htm!

Common Derived Patterns:
e Content-Based Router: Routes a message based on its content
(e.g., if order.amount > 1000).
e Message Filter: A special router that either passes a message
or discards it based on a condition.
e Recipient List: Routes a single message to a list of dynamically
specified recipients. N_

©

Pattern 4:

Translator

Incoming Message Translated Message

<user> {

<id>1</id> "userId": 1
Ref: https://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageTranslator.htm/ </user> }

Common Derived Patterns:
e Content Enricher: Adds missing data to a message by retrieving it
from an external source.
e Content Filter: Removes unnecessary or sensitive data from a
message.
e Claim Check: Moves a large message payload to external storage
- and passes along only a reference (a "claim check") to it. N

Use Case: Processing an Order

™) Google Cloud Platform

POST /order

new-order
ew-ordel

if (amount < $1000)
G oo) ELEE wiel) ' std-order

ww

(D) User - API: 200ms v
@ API = Pub/Sub: "order.created"

@ Router Function:
e amount > $1000 -> Workflow
* else - std-order topic
Services process async

User response time: 200ms
Resilience: If a service is down, automatic retry

n

The Quantified Benefits

Zero Lost Orders
If your order manager is down for 2 hours, messages queue up in Pub/Sub.
No revenue is lost.

Handles Black Friday Peaks
// The system scales from 0 to 1000s of requests/sec automatically,
with zero manual intervention.

. . FastUser Response
. The user never waits for slow internal systems.
The experience is always fast and fluid.

5 Mistakes We Made (So You Don't Have To)

X Error #2: “Idempotency isn’t needed, Pub/Sub is at-least-once”
X Error #1: “Messages always arrive in order” Reality Check: At-least-once = possible duplicates!
Reality Check: Pub/Sub does not guarantee global ordering Consequence: Customer charged 3 times for the same order &

Solution: Use an idempotency key on EVERY critical operation

X Error #3: “All errors are temporary”
Reality Check: Some errors won’t be fixed by retries
Solution: Classify errors

Transient: Network timeout - Retry

X Error #4: “Pub/Sub can handle any message”
Reality Check: 10 MB message size limit
Permanent: Invalid data > DLQ Solution: Use the Claim Check Pattern

© “In distributed systems, anything that can go wrong will go wrong... simultaneously... on Friday at 5:00 PM"”

GCP Pub/Sub vs Apache Kafka vs RabbitMQ

Cloud Pub/Sub (GCP)

When to use:

? Already on GCP ecosystem

[l Very high volume (billion of msg/day)
& Need to scale globally

@ Predictable cost model

Use case: Real-time analytics, loT telemetry

Apache Kafka

When to use:

B Event sourcing / log streaming
B Needs to event reply

Stream processing

B On-premise or hybrid cloud

Use case: Event store for CQRS, CDC from
database

RabbitMQ

When to use:

2, Complex Routing (topic exchanges)
Messages priority

@ Multiples protocol (AMQP, MQTT)
= Deployment on-premise

Use case: Task queue for job processing,
enterprise microservice

Key Takeaways

W Classic EIPs are your map for modern distributed systems.

W GCP provides the perfect serverless ingredients.

W Decouplingisn'taluxury ; it's the foundation for resilience and speed.
W Start simple (Pub/Sub + Functions), then compose for complexity.

¥ Measure the benefits : less downtime, better UX, more agility.

Thank You! Question?

Repository code

Contacts
Q @anperrone
m_ @antonioperrone

@ https://antonioperrone.dev

http://eaipatterns.com
http://cloud.google.com/pubsub

